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Tokyo 113, Japan
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Abstract. Several aspects of the latticeWN algebra are studied. Motivated by the fact that
the Lotka–Volterra model can be written in terms of a current of the lattice Virasoro algebra
(the Faddeev–Takhtajan–Volkov algebra), integrable dynamical models on the lattice have been
formulated as a model associated with the latticeW3 algebra.

1. Introduction

The classicalWN algebra can be constructed from the free fieldsri(x) for i = 1, 2, . . . , N
satisfying the Poisson algebra [1–3],

{ri(x), rj (y)} =
(
−δi,j + 1

N

)
δ′(x − y). (1.1)

It is well known that the Poisson structure (1.1) is related to theN -reduced KP hierarchy,
and that the Poisson map from the free fields to the pseudodifferential operatorL is defined
as

L = ∂N +
N−1∑
i=1

wi(x)∂
N−1−i = (∂ + r1(x))(∂ + r2(x)) . . . (∂ + rN(x)) (1.2)

with ∂ = ∂/∂x, and

N∑
i=1

ri(x) = 0. (1.3)

The fieldswi(x) for i = 1, 2, . . . , N−1 constitute the classicalWN algebra, and the relation
betweenwi(x) and rj (x) is called the Miura transformation. Among the Poisson relations
for the fieldswi(x), one sees that the fieldw1(x) constitute the Virasoro algebra,

{w1(x), w1(y)} =
(
w1(x)∂ + ∂w1(x)+ N(N

2− 1)

12
∂3

)
δ(x − y). (1.4)

This fact shows that theWN algebra includes the Virasoro algebra as a subalgebra.
Recently the difference analogue of theWN algebra in both the classical and quantum

cases has received much attention [4–6]. Theq-deformation of the free field realization (1.1)
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was given in [7] as algebra for theq-deformed free fields3i(z) for i = 1, 2, . . . , N ;

{3i(z),3i(w)} =
∞∑

m=−∞

(w
z

)m (1− qm)(1− qm(N−1))

1− qmN 3i(z)3i(w) (1.5a)

{3i(z),3j (w)} = −
∞∑

m=−∞

(
wqN+i−j−1

z

)m
(1− qm)2
1− qmN 3i(z)3j (w) for i < j . (1.5b)

In terms of these deformed free fields, the difference analogue of the pseudodifferential
operator (1.2) is defined as

L = (D −31(z))(D −32(z)) . . . (D −3N(z))

= DN − t1(z)DN−1+ · · · + (−)N−1tN−1(z)D + (−)N . (1.6)

HereD denotes aq-difference operator,

(Df )(z) = f (zq)
and theq-deformed free fields3i(z) satisfy a condition,

31(z)32(z) . . . 3N(z) = 1. (1.7)

Identities among ti(z) and 3i(z) are called the q-deformation of the Miura
transformation (1.2). With the difference operatorL (1.6), we can define the difference
analogue of the Korteweg–de Vries (KdV)-type hierarchy [7].

On the other hand, there is another deformation of theWN algebra, i.e. the lattice version
of theWN algebra, which may be related to theslN Toda theory on the lattice [8–14]. The
most famous example is the Lotka–Volterra model. It is known that the Lotka–Volterra
model reduces to the KdV equation in the continuum limit, and that it can be formulated
in terms of the lattice Virasoro algebra (the Faddeev–Takhtajan–Volkov algebra) [8–11]. In
this paper, following a method of [15], we study the latticeWN algebra. Introducing the
Lax matrix, we also define the integrable models associated with the latticeWN algebra.

This paper is organized as follows. In section 2 the lattice Virasoro algebra is formulated
following [15]. The relationship with Frenkel’s deformed KdV equation becomes clear. The
integrability of the Lotka–Volterra model is reformulated with the lattice Virasoro algebra.
In section 3 we generalized a method of [15] to the latticeW3 algebra. Although the
definition of the free field on the lattice is different from the previously known method
[12–14], the resultingW3 algebra is exactly the same. It is also discussed that the integrable
models are associated with the latticeW3 algebra. By introducing the 3× 3 ‘local’ Lax
matrix, we define the integrable systems on the lattice. It is shown that, in the continuum
limit, the dynamical models on the lattice reduce to the nonlinear differential equations,
which belong to the Boussinesq hierarchy. The last section is devoted to the concluding
remarks.

2. Lattice KdV hierarchy

2.1. Lattice Virasoro algebra

We consider the deformation of the KdV hierarchy (N = 2 in (1.6)), in which theq-
difference operatorL (1.6) is written as

L = D2− t (z)D + 1= (D −3(z))
(
D − 1

3(z)

)
. (2.1)
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The second equality indicates that the fieldt (z) is related to theq-deformed free field3(z)
by theq-deformed Miura transformation,

t (z) = 3(z)+ 1

3(qz)
. (2.2)

As the Poisson relation (1.5) forN = 2 case is given by

{3(z),3(w)} =
∞∑

m=−∞

1− qm
1+ qm

(w
z

)m
3(z)3(w) (2.3)

we see that the fieldt (z) satisfies a relation,

{t (z), t (w)} =
∞∑

m=−∞

1− qm
1+ qm

(w
z

)m
t (z)t (w)+ δ

(qw
z

)
− δ

(
w

qz

)
. (2.4)

Hereafter, in theq-difference case, the delta functionδ(z) is denoted as

δ(z) =
∞∑

m=−∞
zm. (2.5)

We note that the field̀(z), defined by

`(z) = 1

t (z)t (qz)
= 3(qz)3(q2z)

(3(z)3(qz)+ 1)(3(qz)3(q2z)+ 1)
(2.6)

satisfies a simple Poisson relation;

{`(z), `(w)} = δ
(
q2w

z

)
`(w)`(qw)`(q2w)+ δ

(qw
z

)
`(z)`(w)(`(z)+ `(w)− 1)

−δ
(
w

qz

)
`(z)`(w)(`(z)+ `(w)− 1)− δ

(
w

q2z

)
`(z)`(qz)`(q2z). (2.7)

One sees that the Poisson algebra for the field`(z) does not contain the infinite sum terms.
Following a strategy of [15], we consider the dynamical variablesvk on the lattice. The

Poisson algebra forvk is supposed to be

{vk, vl} =


η(−)k−lvkvl for k < l

0 for k = l
−{vl, vk} for k > l

(2.8)

whereη is arbitrary. The dynamical variablevk naively corresponds to theq-deformed free
field 3(zqk); (2.3) reduces to (2.8) with a proper choice of a parameterq [15].

We shall define the Miura transformation on the lattice in the same way with (2.2) as

sk = vk + 1

vk+1
. (2.9)

The Poisson relations for variablessk are computed from (2.8) and (2.9) as,

{sk, sl} = η(−)k−lsksl + ηδk+1,l for k < l. (2.10)

The above Poisson algebra is a lattice analogue of the algebra (2.4).
To relate with the known Poisson algebra, we introduce a new variableSk by

Sk = 1

sksk+1
. (2.11)
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As the Poisson algebra (2.7) for the field`(z) does not include the infinite-sum terms, the
non-trivial Poisson relations among dynamical variablesSk are simply given as

{Sk, Sk+2} = ηSkSk+1Sk+2 (2.12a)

{Sk, Sk+1} = −ηSkSk+1(1− Sk − Sk+1). (2.12b)

The algebra (2.12) is a lattice analogue of (2.7), and is called the lattice Virasoro algebra,
or the Faddeev–Takhtajan–Volkov (FTV) algebra [8–11]. We remark that the FTV algebra
originally appeared in studies of the lattice Liouville theory and the massless sine-Gordon
model, which is related to the lattice KdV equation [16].

We note that transformation (2.11) is rewritten using the lattice Miura transforma-
tion (2.9) as

Sk = αk+1

(1+ αk)(1+ αk+1)
. (2.13)

Here variablesαk are dynamical variables defined by

αk = vkvk+1 (2.14)

and using the Poisson algebra (2.8), they are proved to satisfy the local Poisson relation,

{αk, αk+1} = −ηαkαk+1. (2.15)

Transformation (2.13) was introduced in [9] as a lattice analogue of the Miura
transformation.

2.2. Hamiltonian structure

We review the results of [8–11] for the classical integrable models associated with the FTV
algebra (2.12). We define the Lax matrixL̃n(λ) for n ∈ Z as a 2× 2 matrix,

L̃n(λ) = 1√
Sn

(
λ −Sn
1 0

)
. (2.16)

Hereλ is called the spectral parameter. We also introduce the transfer matrixt (λ) as the
product of the Lax matrices;

t (λ) = Tr T(λ)

= Tr

( x∏
k

L̃k(λ)
)
= Tr(. . . L̃n+1(λ)L̃n(λ)L̃n−1(λ) . . .) (2.17)

where a matrixT(λ) is the monodromy matrix. We suppose that a lattice is infinite or
periodic. To study the integrable model associated with the transfer matrixt (λ) (2.17), we
gauge-transform the Lax matrix (2.16) as

Ln+1(λ) = Ωn+1(λ)L̃n(λ)Ωn(λ)
−1 (2.18)

with Ωn(λ) defined by

Ωn(λ) =
(
(λ2− 1)−1/4(1+ αn)1/2 0

0 (λ2− 1)1/4(1+ αn)−1/2

)(
1 −λ(αn + 1)−1

0 1

)
.

(2.19)

As a result, we obtain the localL-matrix,

Ln(λ) =
(

λα
1/2
n (λ2− 1)1/2α1/2

n

(λ2− 1)1/2α−1/2
n λα

−1/2
n

)
. (2.20)
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Owing to the gauge transformation (2.18), the Poisson algebra for the Lax matrix becomes
quite simple, and the non-trivial Poisson relation is written as

{Ln(λ)⊗,Ln+1(µ)} = −η
4
σ3Ln(λ)⊗ σ3Ln+1(µ) (2.21)

whereσ3 is the Pauli matrix,

σ3 =
(

1 0
0 −1

)
.

To see the integrability of the classical model, we need another identity for the Lax matrix,

−σ3Ln(λ)⊗Ln(µ)σ3+Ln(λ)σ3⊗σ3Ln(µ) = 2[r(λ, µ),Ln(λ)⊗Ln(µ)](2.22)

where ther-matrix is defined by

r(λ, µ) =


a

0 b

b 0
a

 . (2.23)

Each element is given as

a = θ + θ−1

θ − θ−1
b = 2

θ − θ−1

with a modified spectral parameterθ ,

θ =
√

1− µ−2

1− λ−2
.

We note that ther-matrix (2.23) is a solution of the classical Yang–Baxter equation, and
a quasiclassical limit of theR-matrix for the six vertex model. From identities (2.21)
and (2.22), we see that the monodromy matrixT(λ) satisfies a usual Poisson relation,

{T(λ)⊗,T(µ)} = −η
2

[r(λ, µ),T(λ)⊗ T(µ)] (2.24)

which proves the Poisson commutativity of the transfer matrixt (λ) (2.17),

{t (λ), t (µ)} = 0. (2.25)

In conclusion, we have obtained the transfer matrix which generates the integrable
Hamiltonians associated with the FTV algebra.

Once we have obtained the Poisson commutative transfer matrix, a set of the integrable
Hamiltonians is given by expanding the transfer matrixt (λ) (2.17) by a spectral parameter
λ;

t (λ) = exp(−H0)(λ
M + λM−2H1+ λM−4H′2+ λM−6H′3+ · · ·) (2.26)

whereM denotes the size of the system. Noted are the explicit forms for some conserved
quantities;

H0 = 1
2

∑
n

logSn (2.27a)

H1 = −
∑
n

Sn (2.27b)

H2 = 1
2(H1)

2−H′2
=
∑
n

( 1
2S

2
n + SnSn+1) (2.27c)
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H3 = H1H′2− 1
3(H1)

3−H′3
=
∑
n

( 1
3S

3
n + SnSn+1(Sn + Sn+1+ Sn+2)). (2.27d)

We consider the time evolutions associated with the HamiltonianHm by

dSn
dtm
= {Hm, Sn}. (2.28)

One sees that the equation of motion forH0 (2.27a) is then given by

dSn
dt0
= −ηSn(Sn+1− Sn−1) (2.29)

which is called the Lotka–Volterra (LV) model. Also we obtain the equation of motion for
H1 (2.27b) as

dSn
dt1
= η(SnSn+1(Sn + Sn+1+ Sn+2− 1)− SnSn−1(Sn + Sn−1+ Sn−2− 1)) (2.30)

which is a higher-order equation of motion for the Volterra hierarchy.

2.3. Continuum limit

We shall consider the continuum limit of the integrable dynamical equations on the lattice,
(2.29) and (2.30). To this end, we set the free variablevk (2.8) on the lattice as

vn+i → exp(εr(x − iε)) for i = 0,±1,±2, . . . (2.31)

wherer(x) denotes a free field (1.1), andε is an infinitesimal parameter. In this limit we
see that, from (2.13) and (2.14), the Volterra’s dynamical variableSn reduces to

Sn→ 1

4
+ ε

2

4
w(x)− ε

3

4
w′(x)+O(ε4) (2.32)

where a fieldw(x) is given fromr(x) by the Miura transformation,

w(x) = −r(x)2− r ′(x) (2.33)

and ′ denotes a derivative with respect tox. To simplify our notation, we also rescale the
time flows t0 and t1 (2.28) as

d

dt0
→ η

ε

2

d

dτ0
(2.34a)

1

2

d

dt0
+ d

dt1
→−ηε

3

8

d

dτ1
. (2.34b)

We thus obtain the integrable nonlinear differential equations as continuum limits of (2.29)
and (2.30), respectively,

dw(x)

dτ0
= w′(x) (2.35a)

dw(x)

dτ1
= w′′′(x)+ 6w(x)w′(x) (2.35b)

which coincide with the lowest two flows of the KdV hierarchy generated from the
pseudodifferential operator,L = ∂2+w. In conclusion, we can regard equations of motion
(2.29) and (2.30) as the lattice deformed KdV equations.
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3. Lattice Boussinesq hierarchy

3.1. LatticeW3 algebra

We shall consider the deformed Boussinesq hierarchy, which should be formulated with the
third-order difference operator (N = 3 in (1.6));

L = D3− t1(z)D2+ t2(z)D − 1= (D −31(z))(D −32(z))(D −33(z)) (3.1)

where we set31(z)32(z)33(z) = 1, and the Poisson algebra is given as

{3i(z),3i(w)} =
∞∑

m=−∞

(w
z

)m (1− qm)(1− q2m)

1− q3m
3i(z)3i(w) for i = 1, 2 (3.2a)

{31(z),32(w)} = −
∞∑

m=−∞

(wq
z

)m (1− qm)2
1− q3m

31(z)32(w). (3.2b)

The q-difference Miura transformations are written as

t1(z) = 31(z)+32(qz)+33(q
2z) (3.3a)

t2(z) = 31(z)32(z)+31(z)33(qz)+32(qz)33(qz). (3.3b)

Using the Poisson relations (3.2), these functions are shown to satisfy the following relations;

{t1(z), t1(w)} =
∑
m∈Z

(1− qm)(1− q2m)

1− q3m

(w
z

)m
t1(z)t1(w)+ δ

(qw
z

)
t2(z)− δ

(
w

qz

)
t2(w)

(3.4a)

{t1(z), t2(w)} =
∑
m∈Z

(1− qm)2
1− q3m

(w
z

)m
t1(z)t2(w)+ δ

(qw
z

)
− δ

(
w

q2z

)
(3.4b)

{t2(z), t2(w)} =
∑
m∈Z

(1− qm)(1− q2m)

1− q3m

(w
z

)m
t2(z)t2(w)+ δ

(qw
z

)
t1(w)− δ

(
w

qz

)
t1(z).

(3.4c)

As a lattice analogue of these relations is known as theq-Boussinesq hierarchy, we
introduce dynamical variablesuk and vk on the lattice. These variables,uk and vk,
respectively correspond to theq-deformed free fields31(zq

k) and32(zq
k), and satisfy

the Poisson relations,

{uk, ul} = ηϕ(k − l)ukul for k > l (3.5a)

{vk, vl} = ηϕ(k − l)vkvl for k > l (3.5b)

{uk, vl} =
{
ηϕ(k − l + 1)ukvl for k > l

−ηϕ(k − l + 1)ukvl for k 6 l.
(3.5c)

Here a functionϕ(k) denotes asignatureof k ∈ Z moduloN = 3, and defined by

ϕ(k) = $k +$ 2k =
{

2 for k = 0 (mod 3)

−1 otherwise
(3.6)

with a primitive root of unity;$ = exp(2π i/3). One sees the resemblance between the
Poisson algebras, (3.2) and (3.5); the lattice algebra (3.5) is naively given by settingq → $
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in (3.2). With these free variablesuk andvk on the lattice, we consider a lattice analogue
of the Miura transformation (3.3). We set dynamical variablessk and tk as

sk = uk + vk+1+ 1

uk+2vk+2
(3.7a)

tk = ukvk + 1

uk+1
+ uk

uk+1vk+1
. (3.7b)

Using relations (3.5), we obtain the Poisson relations amongsk and tk after tedious
computation;

{sk, sl} = ηϕ(k − l)sksl + 2ηtkδk,l+1 for k > l (3.8a)

{tk, tl} = ηϕ(k − l)tktl + 2ηslδk,l+1 for k > l (3.8b)

{sk, tl} =
{
−ηϕ(k − l − 1)sktl + 2ηδk,l+1 for k > l
ηϕ(k − l − 1)sktl − 2ηδk,l−2 for k < l.

(3.8c)

These relations are lattice analogues of the Poisson algebra (3.4) for the fieldst1(z) and
t2(z), and include ‘long-range’ connection. To erase the long-range connection in these
Poisson relations, we introduce dynamical variablesLk andWk by

Wk = 1

sksk+1sk+2
(3.9a)

Lk = tk+1

sksk+1
. (3.9b)

After simple computation, we see that the non-trivial Poisson algebra amongLk andWk is
given as follows

{Wk+3,Wk} = 2ηWkWk+3Lk+2 (3.10a)

{Wk+2,Wk} = 2ηWkWk+2(−1+ Lk+1+ Lk+2) (3.10b)

{Wk+1,Wk} = 2ηWkWk+1(−1+ Lk + Lk+2) (3.10c)

{Lk+2, Lk} = 2η(LkLk+1Lk+2− LkWk+1− Lk+2Wk) (3.10d)

{Lk+1, Lk} = 2η(Lk + Lk+1− 1)(LkLk+1−Wk) (3.10e)

{Wk+2, Lk} = 2ηWk+2(−Wk + LkLk+1) (3.10f)

{Wk+1, Lk} = 2ηWk+1(−Wk + Lk(Lk + Lk+1− 1)) (3.10g)

{Wk,Lk} = 2ηWk(−Wk + LkLk+1) (3.10h)

{Wk−1, Lk} = 2ηWk−1(Wk−1− Lk−1Lk) (3.10i)

{Wk−2, Lk} = 2ηWk−2(Wk−1− Lk(Lk + Lk−1− 1)) (3.10j)

{Wk−3, Lk} = 2ηWk−3(Wk−1− LkLk−1). (3.10k)

This algebra was constructed in [12–14] as the latticeW3 algebra. To see the relation with
our construction, we introduce new variablesαk andβk as

αk = ukuk+2vk+2 (3.11a)

βk = uk+2vk+1vk+2. (3.11b)

These dynamical variables are shown to satisfy the following local Poisson relations
from (3.5);

{αk+1, αk} = −2ηαkαk+1 (3.12a)

{βk+1, βk} = −2ηβk+1βk (3.12b)
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{αk, βk} = −2ηαkβk (3.12c)

{αk−1, βk} = 2ηαk−1βk. (3.12d)

From the definition ofLk andWk (3.9), we find that variablesLk andWk are written in
terms ofαk andβk as

Wk = βk+1αk+2

(1+ αk + βk)(1+ αk+1+ βk+1)(1+ αk+2+ βk+2)
(3.13a)

Lk = αk+1+ βk+1+ αk+1βk

(1+ αk + βk)(1+ αk+1+ βk+1)
. (3.13b)

It should be remarked that definition (3.13) of currentsLk andWk are exactly same with
the lattice Miura transformation in [12, 13], wherein the latticeW3 algebra was studied in a
different context.

3.2. Hamiltonian structure

As the LV model (2.29) was derived from the lattice Virasoro algebra, we shall consider
the integrable models associated with the latticeW3 algebra (3.10). For our purpose, we set
the Lax matrixL̃n(λ) as a 3× 3 matrix as

L̃n(λ) = 1

W
1/3
n

(
λ2 −λLn+1 Wn

1 0 0
0 1 0

)
. (3.14)

The determinant of the Lax matrix is set to be unity; DetL̃n(λ) = 1. To prove the Poisson
commutativity of the transfer matrix, we gauge transform the Lax matrix (3.14) as

Ln+1(λ) = Ωn+1(λ)L̃n(λ)Ωn(λ)
−1. (3.15)

Here matrixΩn is given by

Ωn =
 (λ3− 1)−1/3ω

1/3
n ω

2/3
n+1

ω
1/3
n ω

−1/3
n+1

(λ3− 1)1/3ω−2/3
n ω

−1/3
n+1


×
( 1 −λ2(1+ βn+1)ω

−1
n+1 λβn+1ω

−1
n ω

−1
n+1

0 λ −ω−1
n

0 ωn 0

)
(3.16)

with ωn ≡ 1+αn+βn. After a simple calculation, we obtain the local Lax matrixLn(λ) as

Ln(λ) =
 λ2α

2/3
n+1β

−1/3
n (λ3− 1)2/3α2/3

n+1β
2/3
n λ(λ3− 1)1/3α2/3

n+1β
−1/3
n

λ(λ3− 1)1/3α−1/3
n+1 β

−1/3
n λ2α

−1/3
n+1 β

2/3
n (λ3− 1)2/3α−1/3

n+1 β
−1/3
n

(λ3− 1)2/3α−1/3
n+1 β

−1/3
n λ(λ3− 1)1/3α−1/3

n+1 β
2/3
n λ2α

−1/3
n+1 β

−1/3
n

 .
(3.17)

Here ‘local’ means that the non-trivial Poisson brackets are given as

{Ln(λ)⊗,Ln+1(µ)} = 2ηH1Ln(λ)⊗ H1Ln+1(µ)+ 2η(−H1Ln(λ)+ Ln(λ)H2)⊗ Ln+1(µ)H2

(3.18a)

{Ln(λ)⊗,Ln+2(µ)} = 2ηH1Ln(λ)⊗ Ln+2(µ)H2 (3.18b)

where matricesH1 andH2 are diagonal,

H1 =
− 2

3
1
3

1
3

 H2 =
 1

3

− 2
3

1
3

 .
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As in the case of the FTV algebra, we define the monodromy matrixT(λ) and the transfer
matrix t (λ) as

T(λ) =
x∏
n

Ln(λ) (3.19)

t (λ) = Tr T(λ). (3.20)

We see from the Poisson algebra (3.18) that, if we have the classicalr-matrix satisfying,

Ln(λ)H2⊗ Ln(µ)H1+ Ln(λ)H2⊗ H2Ln(µ)+ Ln(λ)H1⊗ H2Ln(µ)+ Ln(λ)H1⊗ H1Ln(µ)

−H2Ln(λ)⊗ Ln(µ)H2− H2Ln(λ)⊗ Ln(µ)H1

−H1Ln(λ)⊗ Ln(µ)H1− Ln(λ)H1⊗ Ln(µ)H2

= 1
2[r(λ, µ),Ln(λ)⊗ Ln(µ)] (3.21)

we have a usual Poisson structure for the monodromy matrixT(λ) as,

{T(λ)⊗,T(µ)} = η[r(λ, µ),T(λ)⊗ T(µ)]. (3.22)

This Poisson structure for the monodromy matrix proves that the transfer matrixt (λ)

becomes a generating function of the conserved quantities for an integrable model associated
with the latticeW3 algebra;

{t (λ), t (µ)} = 0. (3.23)

Indeed we empirically find that equation (3.21) is fulfilled for the following classicalr-
matrix;

r(λ, µ) =



0
a c

b d

d b

0
a c

c a

d b

0


(3.24)

where each matrix element is given by

a = 1

3
− θ + θ

−1

θ − θ−1
b = −1

3
− θ + θ

−1

θ − θ−1

c = 2θ−1/3

θ − θ−1
d = 2θ1/3

θ − θ−1

with a modified spectral parameterθ ,

θ =
√

1− µ−3

1− λ−3
.

We remark that thisr-matrix isZ3-invariant,

r(λ, µ) = (C⊗ C)r(λ, µ)(C−1⊗ C−1)

C =
( 0 0 1

1 0 0
0 1 0

)
C3 = 1I.

(3.25)
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One sees that ther-matrix (3.24) satisfies the classical Yang–Baxter equation, and that it
is a classical analogue of theZ3-invariant solution of the Yang–Baxter equation [17]. This
fact reminds us of a construction of theWN algebra from theZN invariant conformal field
theory [18].

We extract the integrable Hamiltonians for the latticeW3 algebra (3.10). The conserved
quantities are given from the transfer matrix by

t (λ) = exp(−H0)(λ
2M +H1λ

2M−3+H′2λ2M−6+H′3λ2M−9+ . . .) (3.26)

where, as before,M is the number of lattices. Due to the gauge transformation (3.15), each
conserved quantities can be given in terms of theW -algebra currentsWn andLn. We note
that each Hamiltonian is computed as follows

H0 = 1
3

∑
n

logWn (3.27a)

H1 = −
∑
n

Ln (3.27b)

H2 = 1
2(H1)

2−H′2
=
∑
n

( 1
2L

2
n + LnLn+1−Wn) (3.27c)

H3 = H1H′2− 1
3(H1)

3−H′3
=
∑
n

( 1
3L

3
n + LnLn+1(Ln + Ln+1+ Ln+2)−Wn(Ln−1+ Ln + Ln+1+ Ln+2)). (3.27d)

By construction, these Hamiltonians Poisson commute with each other. As time evolution
flows associated with these Hamiltonians, we define the timetm as

dO
dtm
= {Hm,O}. (3.28)

We then obtain the equations of motions fort0 as

dLn
dt0
= 2η(−Wn +Wn−1+ Ln(Ln+1− Ln−1)) (3.29a)

dWn

dt0
= 2ηWn(Ln+2− Ln−1). (3.29b)

Equations of motions for the HamiltonianH1 are computed as,

dLn
dt1
= 2η((Wn − LnLn+1)(Ln + Ln+1+ Ln+2− 1)

−(Wn−1− LnLn−1)(Ln + Ln−1+ Ln−2− 1)+ Ln(Wn+1−Wn−2)) (3.30a)
dWn

dt1
= 2ηWn(Wn+1+Wn+2−Wn−1−Wn−2− Ln+2(Ln+1+ Ln+2+ Ln+3− 1)

+Ln−1(Ln + Ln−1+ Ln−2− 1)). (3.30b)

As will be clarified in section 3.3, these differential–difference equations can be regarded
as the lattice Boussinesq equations.

3.3. Continuum limit

We shall take the continuum limit of the dynamical equations on the lattice, (3.29) and
(3.30). As in the case of the lattice KdV hierarchy, we set the free dynamical variablesun
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andvn (3.5) as

un+i → exp(εr1(x − iε)) (3.31a)

vn+i → exp(εr2(x − iε)) (3.31b)

where r1(x) and r2(x) are the free fields in (1.1). In this limit we find that, using the
definitions (3.9) and (3.7), the variablesLn andWn reduce to

Ln→ 1

3
+ ε

2

9

(
w1(x)+ ε

2
w̃1(x)

)
+O(ε4) (3.32a)

Wn→ 1

27
+ ε2

27

(
w1(x)+ ε

2
w̃1(x)

)
+ ε3

27
(w2(x)− w′1(x))+O(ε4). (3.32b)

Herew1(x) andw2(x) denote fields in the pseudodifferential operatorL (1.2), and explicitly
written as,

w1(x) = −r2
1 − r1r2− r2

2 − 2r ′1− r ′2 (3.33a)

w2(x) = −r2
1r2− r1r2

2 − (r1+ r2)(r ′1+ 2r ′2)− r ′′1 − r ′′2 . (3.33b)

These are the generalized Miura transformations. Fieldw̃1(x) is an ‘unwanted’ field given
by

w̃(x) = 3(r1r2+ 2r ′1)(r1+ r2)+ (8r1+ 10r2)r
′
2+ 6r ′′1 + 5r ′′2 . (3.34)

To write down the continuum limit of the integrable lattice equations (3.29) and (3.30), we
re-scale the time flowstm (3.28) as

d

dt0
→−2η

ε

3

d

dτ0
(3.35a)

1

3

d

dt0
+ d

dt1
→ 2η

ε2

9

d

dτ1
. (3.35b)

After a straightforward but lengthy computation, we obtain the continuum limit of the lattice
integrable models (3.29) and (3.30) as follows

dw1(x)

dτ0
= w′1(x) (3.36a)

dw2(x)

dτ0
= w′2(x) (3.36b)

dw1(x)

dτ1
= w′′1 − 2w′2 (3.37a)

dw2(x)

dτ1
= −w′′2 +

2

3
w′′′1 +

2

3
w1w

′
1. (3.37b)

These are nothing but the first two flows of the Boussinesq hierarchy generated from the
third-order pseudodifferential operator,L = ∂3+ w1∂ + w2.

4. Concluding remarks

In this paper we have studied the lattice analogue of theWN algebra. Following a method
of [15], we have introduced integrable models in terms of the free dynamical variables on
the lattice. It is shown that, in the case of theN = 2 case, the integrable model is the
famous LV model. As a generalization, we have studied the latticeW3 algebra in detail.
We have checked that our construction from the free dynamical variables produces Belovet
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al’s lattice algebra. The integrable structure of the generalWN algebra would be discussed
in the forth coming paper [19].

We have only treated theclassical algebra in this paper, but the quantization of the
local 2× 2 Lax matrix for the lattice KdV hierarchy (2.20) was studied in [10, 20–22],
and enlightens the structure of the sine-Gordon model on the lattice and the discrete KdV
equation. In this sense, the quantization of thelocal Lax matrix for the lattice Boussinesq
hierarchy (3.17) and theN -reduced lattice KP hierarchy will give us new insights into the
discretization of the conformal field theories [23].

As a final comment, there exists the Bogoyavlensky model (or, the hungry Volterra
model) [24–27], which was introduced as a discretization of the KdV equation;

dVn
dτ
= Vn

( M∑
i=1

Vn+i −
M∑
i=1

Vn−i

)
. (4.1)

In the simple caseM = 1, this model reduces to the LV model (2.29), and currents
Vn constitute the FTV algebra, i.e. the lattice Virasoro algebra. Further, equations of
motion (3.30) can be reproduced from those for the Bogoyavlensky model withM = 2.
Based on these facts, we may regard the Bogoyavlensky model (4.1) as a simple realization
of the latticeWM+1 algebra.

Note added in proof. Using theτ -function we find that the Bogoyavlensky lattice (4.1) is equivalent to the lattice
WM+1 algebra.
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